分子动力学模拟是许多科学领域中的宝贵工具。但是,无处不在的经典力场无法描述反应性系统,量子分子动力学在计算上要求太大,无法处理大型系统或长时间尺度。基于物理或机器学习的反应力场可以在时间和长度尺度上弥合差距,但是这些力场需要大量努力来构建,并且对给定的化学组成和应用高度特异性。机器学习模型的一个重要局限性是使用特定于元素的功能,导致模型随着元素数量而缩小范围很差。这项工作介绍了高斯多极(GMP)特征化方案,该方案利用了原子周围电子密度的物理相关的多极膨胀,以产生特征向量,这些向量在元素类型之间插值并且具有固定尺寸,而不管存在的元素数量。我们将GMP与神经网络相结合,将其直接与MD17数据集的广泛使用的Beller-Parinello对称函数进行比较,从而表明它表现出提高的准确性和计算效率。此外,我们证明了基于GMP的模型可以实现QM9数据集的化学准确性,即使推断到新元素时,它们的准确性仍然是合理的。最后,我们测试了基于GMP的开放式催化项目(OCP)数据集的模型,揭示了与图形卷积深度学习模型相当的性能。结果表明,这种特征方案填补了有效且可转移的机器学习力场的构建方面的关键空白。
translated by 谷歌翻译
近年来,机器学习(ML)在化学信息学和电子结构理论领域中广受欢迎。这些技术通常需要研究人员来设计摘要的“特征”,这些特征将化学概念编码为与机器学习模型的输入兼容的数学形式。但是,没有现有的工具可以将这些抽象功能连接回实际的化学系统,从而使诊断失败并建立有关功能含义的直觉变得困难。我们提出了Electrolens,这是一种新的可视化工具,用于高维空间分辨的特征,以解决此问题。该工具通过一系列链接的3D视图和2D图可视化原子和电子环境特征的高维数据集。该工具能够通过交互式选择在3D中连接不同的派生功能及其相应区域。它的构建是可扩展的,并与现有基础架构集成。
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
The surrogate loss of variational autoencoders (VAEs) poses various challenges to their training, inducing the imbalance between task fitting and representation inference. To avert this, the existing strategies for VAEs focus on adjusting the tradeoff by introducing hyperparameters, deriving a tighter bound under some mild assumptions, or decomposing the loss components per certain neural settings. VAEs still suffer from uncertain tradeoff learning.We propose a novel evolutionary variational autoencoder (eVAE) building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm into VAE with variational evolutionary operators including variational mutation, crossover, and evolution. Its inner-outer-joint training mechanism synergistically and dynamically generates and updates the uncertain tradeoff learning in the evidence lower bound (ELBO) without additional constraints. Apart from learning a lossy compression and representation of data under the VIB assumption, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and deep neural networks and addresses the premature convergence and random search problem by integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all disentangled factors with sharp images, and improves the image generation quality,respectively. eVAE achieves better reconstruction loss, disentanglement, and generation-inference balance than its competitors.
translated by 谷歌翻译
With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few training examples. It has been a new trend exploring ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress, challenges, and future work in ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques of ICL, including training strategies, prompting strategies, and so on. Finally, we present the challenges of ICL and provide potential directions for further research. We hope our work can encourage more research on uncovering how ICL works and improving ICL in future work.
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
translated by 谷歌翻译
Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST}) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), which is an innovative idea for realizing lightweight through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module to obtain the optimal bit width automatically under a constrained condition where a threshold for distribution distance between the center and samples is applied in the weight value search space. Third, in order to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network a ability of self-judgment. A switch control machine (SCM) builds a bridge between the student network and teacher network in the same location to help the teacher to reduce wrong guidance and impart vital knowledge to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
translated by 谷歌翻译
Recent progress in geometric computer vision has shown significant advances in reconstruction and novel view rendering from multiple views by capturing the scene as a neural radiance field. Such approaches have changed the paradigm of reconstruction but need a plethora of views and do not make use of object shape priors. On the other hand, deep learning has shown how to use priors in order to infer shape from single images. Such approaches, though, require that the object is reconstructed in a canonical pose or assume that object pose is known during training. In this paper, we address the problem of how to compute equivariant priors for reconstruction from a few images, given the relative poses of the cameras. Our proposed reconstruction is $SE(3)$-gauge equivariant, meaning that it is equivariant to the choice of world frame. To achieve this, we make two novel contributions to light field processing: we define light field convolution and we show how it can be approximated by intra-view $SE(2)$ convolutions because the original light field convolution is computationally and memory-wise intractable; we design a map from the light field to $\mathbb{R}^3$ that is equivariant to the transformation of the world frame and to the rotation of the views. We demonstrate equivariance by obtaining robust results in roto-translated datasets without performing transformation augmentation.
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译